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Chain polymers near an adsorbing surface 

Rainer Hegger and Peter Grassberger 
Physics Department, University of Wuppert;rl, D-42097 Wuppenal, Gemany 

Received 18 January 1994 

Abstract. We present improved estimates of critical exponents for 3D polymers near a plane 
adsorbing surface. The improvements were possible by simulating rather long chains (up to 
N = 2000) by means of a new algorithm. Apart from minor but significant adjustments in 
the location of the tricritical point and in the various y-exponents, our main result is that the 
crossover exponent for critical adsorption is compatible with 4 = 1. This is much lower than 
previous estimates and suggests that this exponent might be superunived. 

4. Introduction 

Polymers exhibit a rich variety of phase transitions and associated critical exponents. In 
the simplest case of a single chain in a good solvent, a homogeneous medium, and no 
interactions other than the excluded volume effect, polymers are modelled by self-avoiding 
walks (SAWS). As was shown by de Gennes [l], they correspond to the n --f 0 limit of 
an O(n) system. Other members of this family are the Ising model (n = l), the XY 
model (n = 2) and the Heisenberg model (n = 3). These models were investigated 
intensively by the use of a variety of different methods, including mean-field approaches, 
perturbation theory, +expansions, transfer-matrix methods, exact enumerations and Monte 
Carlo simulations [2]. 

Other critical phenomena are obtained if one includes e.g. attractive self-interactions, 
long-range electrostatic repulsion, branched polymers, polymer networks, or inhomogeneous 
media. 

The aspect which we are interested in here is provided by the presence of a plain surface 
to which one end of the polymer is attached (for a recent review, see [3]). Except for this 
complication, we consider the simplest case, i.e. a good solvent, no randomness of the 
medium, and a single unbranched polymer. We shall assume space to be three-dimensional 
throughout the paper, and model the polymer by a SAW on a simple cubic lattice. 

The surface can be energetically neutral, presenting a purely geometrical restriction. But 
it can also be attractive for the polymer. In the latter case, the polymer will be adsorbed to 
the surface at low temperatures, while it is desorbed at high temperatures. Thus it is clear 
that there exists a phase transition from a high-temperature phase which is connected to the 
3D bulk behaviour of SAWs, to a collapsed low-temperature phase of essentially 20 SAWs 
[4]. This is of course a sharp transition only in the limit of infinite chain length N ,  and is 
analogous to a tricritical point in a spin model [5,61. 

For the following it will be necessary to deal also with finite values of N or, equivalently, 
to consider a grand canonical ensemble of polymers instead of an ensemble with fixed 
chain length N .  By ‘grand canonical’ we mean, of course, not that the number of chains is 
fluctuating, but the number of monomers, i.e. the chain length ni. More precisely, let CN.,,, 
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be the number of configurations with length N ,  having m sites on the surface. Then our 
ensemble is defined by the partition function 
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Here, 

is a Boltmann factor associated with the energy E gained by a monomer (identified here 
with a lattice sitet) if it is in contact with the surface (p  = l / k e T ;  in the following we 
assume E = kB = 1). The variable p is a fugacity which we assume for simplicity to be 
independent of temperature. Finally, 

is the 'canonical' partition sum at fixed N. The index '1' is to indicate that one end of the 
chain is attached to the surface. 

Analogously, we can define 2(") and 2:') as sums over configurations where both 
ends are on the surface. 

The phase diagram with the two fugacities p. p q  as control parameters is shown in 
figure 1. For small p and q,  long chains are exponentially suppressed, and the ensemble is 
dominated by short chains. Keeping p small but increasing q, we amve at a point qo(p) 
where the average chain length diverges, but chains remain adsorbed to the surface$. 

Similarly, desorbed chains can grow indefinitely when p 2 pc. Notice that pc is 
independent of q ,  which means that pc is just the critical value of p for SAWS in the bulk 
[4,6] (= 0.2139 . . . for a simple cubic lattice), and is the inverse of the effecrive coordination 
number p, pc = l / p .  The tricritical point S = (pc, qe) where the two curves q = qo(p) 
and p = pc meet is analogous to the special point in magnetic transitions 161.' To its left, 
the half-line p = pe corresponds to an ordinary transition (polymer length diverges, no 
adsorption), to its right it is an extraordinary rrunsition (length is already infinite, polymers 
desorb). Finally, it is clear that Z i ) (q )  is analytic for all finite N ,  but develops a singularity 
at q = qc for N W. 

2. Scaling laws 

Let us now state the assumed scaling laws, and define the critical exponents 141. 
Not only for q < qc, but also at the transition point q = qc, the radial extension of a 

chain with fixed large N (measured either via the end-to-end distance or the gyromagnetic 
ratio) is governed by the bulk exponent U. Indeed, even at the transition point the chains are 
essentially isotropic, with the radius parallel and perpendicular to the surface both increasing 
as N u  161. For q > qc, RI +. constant and RII - N Q ,  where y = is the two-dimensional 
exponent. 

Below the transition point, the canonical partition sum scales as 

t Notice that some authors [7,81 prefer to identify monomers with bonds, which results in a different critical 

$ The partition sum for y > ydp)  is defined either by analytic continuation or by putting the whole system into 
a finite box a d  taking the limit of infinite volume at the end. The phase where B single polymer fills a whole 
macroscopic surface or volume is called the 'dense limit' [9, IO]. 

value Of y. 
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Figure 1. Phare diagram of a polymer mached at one end to a surface. The upper part is the 
bulk phase where a single polymer fills the bulk volume with finite density. The lower right 
parf is the surface phase containing a long adsorbed polymer, and the lower le13 phase. finally. 
is the subcritical phase with only short chains. The horizontal line marks the o r d f m ~  (let?) and 
extmordinnry (right) transition, respectively, and the curved line marks the su?j%face rronsilion. 
The point where the two lines meet is the speeiol point. The transitions were determined 
numerically, with emr  ban iess than the line width. Tht method used to localize the surface 
transition will be discussed in section 42. 

Notice that here the connectivity constant has its bulk value, while the exponent y, is 
different from the analogous bulk exponent y .  This implies that 2 ( p ,  q)  has a singularity 
M (pc  - p)-” when p + pc from below. 

Above qc, Z$)(q) scales with the exponent of N in (4) assuming the ZD value yd=2 = 2 
!2 121, and with a q-dependent connectivity ‘constant’. At q = qc, finally, /L = l/pc is agam 

the bulk constant, but y is to be replaced by a value yf. 
An ansatz analogous to (4) can also be made for the canonical partition sum Zg’), with 

new exponents yf, and yjl, respectively. 
For the grand canonical partition sum we make a scaling ansatz in terms of the deviations 

from the special point. As a function of p ,  2 ( ‘ ) ( p ,  q )  has a singularity at pc  for all q,  but 
as a function of q it is analytic and non-vanishing for all q < qc (except when p = pc).  
Thus a natural ansatz is 

where F(z)  is analytic and non-zero at z = 0, and @ is a new critical (‘cross-over’) exponent. 
The exponent of the prefactor in this ansatz is determined by the behaviour at q = qc. 

For the canonical partition sum, this corresponds to an ansatz 

Z i ) (q )  = /LNNy;-’G((q - qc)A’+) (6) 

From this ansatz we find immediately that the surface transition (between the subcritical 

0 

where the scaling function G(z) is related to F ( z )  by a Laplace transform. 

and the surface phase) is at (q - qc) M (pc - p ) d ,  i.e. at 

40(P) = q c  + ZO(PC - P Y  
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where zo is a singularity of F(z) .  Near zo we have 

since in this region the polymer is essentially adsorbed to the surface, and 2 ( ' ) ( p ,  q)  is 
essentially a partition sum of 2D polymers which diverges for q + qo(p)  with the exponent 

Further scaling laws can be obtained as usual by differentiating the partition sums. The 
-Yd=Z. 

average energy in the canonical ensemble is given, e.g., by 

from which we  find that the energy per monomer scales as [4] 

[(Tc - T)N]-l ' T < T, 

EN(T) f N  - N'-' T = T, ( 10) I (T - TC)'I4-' T > T , .  

Finally, we quote without derivation a relation between critical exponents [ 11,121 which 

(11) 

is expected to hold both at the ordinary and special transitions, 

2YI - Y - Yll  = IJ. 

3. The algorithm 

In the following we shall use Monte Carlo simulations on a simple cubic lattice, in order 
to test the above scaling relations and to estimate the critical exponents. The surface is 
located at z = 0. The algorithm we use is similar to that presented in [13, 141, but with a 
slight but important improvement. This algorithm is very effective (independently of q), it 
allows one to generate samples with any desired bias, and it is very easy to implement. 

The structure of the algorithm is recursive. Its main part is a subroutine STEP with 
arguments (I, N) which sets the (Nth) monomer at a site I adjacent to the end of an 
(N - 1)-step chain, and marks this sites as occupied. Then it selects a random neighbour 
y of z and tests whether this site is still free (for optimal efficiency, we should avoid 
immediate reversals. Thus, y is chosen from among N- 1 neighbours, where N = 6 is the 
coordination number of the lattice). If it is free, it makes P > 1 calls to itself on average, 
with new arguments (y, N + 1). Here, P 1 is a positive number which is arbitraq in 
principle, though the efficiency of the algorithm depends strongly on a good choice for it. 
More precisely, if P = k + r with k an integer and 0 < r c 1, we first call STEP k times, 
then draw a random number ( uniformly in 10.11, and call STEP again iff f c r t .  After 
that, the site I is marked as free again, and the subroutine is left. 

Notice that this would be just naive sampling, if P = 1 and if STEP would always call 
itself exactly once (provided the new site is free). By choosing P z 1, our algorithm is 
essentially an enrichment method 1151, but with a very different and much more efficient 
data structure than in the original implementation of [16]. We could speed up the algorithm 
slightly by hand-coding the recursion in order to avoid the recursive subroutine call, but 

t This is the main difference with r e s p n  to the version of the algorithm presented in 1131. There. it was proposed 
to make P steps on avenge by trying not one single neighbour, but by making independent trials to step towards 
each ofthe neighbours of z, This would cmte much bigger fluctuations in the number of steps actually .performed, 
making the algorithm thereby less efficient. 
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the difference in speed was sufficiently small that the additional effort (and the chance of 
making errors!) did not seem worthwhile. 

The flexibility of this algorithm results from the fact that P need not he a constant, but 
can be virtually any function of N, y. and of the neighbouring pattem of occupation. 

To obtain a grand canonical ensemble cut off at N = N-. with a surface at z = 0, we 
just have to take 

(N - I ) P  z > O  and NGN,, 

P=P,,(z, N ) =  (N- l)qp z = O  and N < N- (12) 
l o  z < O  or N z N -  

where N is the coordination number of the lattice. 
As shown in [14], efficiency of this algorithm is slightly improved by replacing the 

grand canonical ensemble by an ensemble in which all chain lengths are represented by 
roughly the same number of walks. This can he achieved, without changing the absorption 
strength of the surface, by multiplying P,,(z, N )  by (1 + l /N) l -Yl ,  thus obtaining 

POpt(z, N) = Pgdz. N ) O +  l /N) ' - y '  . (13) 
Here, yl has of course to be replaced by yf when studying the special point. We should 
however point out that it is not necesaary that yl is known very precisely a priori. First 
of all, the improvement obtained by replacing Pgc(z, N) in favour of Popt(z, N )  is not very 
big, and secondly, a rough and sufficient estimate can be obtained in auxiliary runs with 
low statistics. 

Let n(N) be the number of N-step chains in the sample. 'Ihe canonical partition sum 
is then estimated simply by 

As in all implementations of the enrichment method, the chains of the so-constructed 
ensemble are statistically not independent [15]. This is often considered to be its main 
weakness, but it is not as bad as usually claimed. Like the algorithms of [17,18], 
the algorithm essentially performs a random walk in the chain length N with reflecting 
boundaries at N = 0 and N = N,, [18], and two chains are independent only if N had 
vanished in between (i.e. a completely new chain had been started). Thus the number of 
independent chains of length N can be estimated by counting how often the length had 
oscillated between 0 and N. The set of all chains between two consecutive returns to 
N = 0 (i.e. to the main routine) will be called a 'tour'. 

As suggested by the random-walk picture, the number of steps needed to obtain a tour 
with at least one chain of length > N increases quadratically 1181 as N2/D, where D is 
an effective diffusion constant. We found that D % 15. This is in contrast to the previous 
algorithms [17,18] which all have D % 1. In particular, the above value of D is about a 
factor 6.5 larger than for the version of [13], and explains its efficiency. 

An a priori estimate for D is provided by the following argument. Assume that P is 
chosen according to (12) with p = pc .  and E = P - 1 is small (which'is true for high 
dimensions). Then the random walk in N is unbiased, and a back step is only needed when 
the walker hits an occupied site. The chance for this is % E. This means that in average 
1 / ~  forward steps are made between two back steps, each back step reducing N by roughly 
1 / ~ .  This leads to 

D I /€ .  (15) 
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We also made simulations on the square lattice ( E  = 0.137) and on the 4D hypercubic lattice 
( E  = 0.0334), and verified (15). 

Since the probability Psucews,~ (e D / N  for the ‘optimal’ choice of P )  for a tour to 
be ‘successful’ in reaching length N is << 1 for large N ,  the number k ( N )  of successful 
tours has a relative RMS error I/,/=. This sets also a lower limit to the relative 
error of the number of generated chains of length N .  We found numerically that the actual 
variance of the latter is about twice as large, A n ( N ) / n ( N )  sx 1 . 4 / m  . The relative 
error of the end-to-end distance RN (both perpendicular and parallel to the surface) was also 
inversely proportional to the number of successful tours, A R I N / R I N  zx 0 . 4 / m  and 
A R I I N J R I I N  0 . 6 / m ,  respectively. Similar error estimates were found for the other 
observables. 

Our total sample consists of seven subsamples taken at different values of q. Each 
subsample consists of sx 2 x lo7 tours which contain zx 150000 ‘,successful’ tours which 
reached N,, = 2000. Since we used~.the optimal choice Popt, the total number of chains 
of length Nmar was also sx 2 x IO7 for each subsample, out of which 150000 are strictly 
independent. This might not sound very efficient, but it leads to very small statistical errors, 
as can be checked by means of the above estimates. 

Altogether, creating this sample-which is at least on8 order of magnitude larger than 
all previous samples-took about 500 h CPU time on DEC 3000/300 Axp workstations. 

R Hegger and P Grassberger 

4. Results 

4.1. The ordinary transition 

We begin with the ordinary transition, i.e. the transition from the subcritical to the bulk 
phase. In particular, we used q = 1 ,  in which case the surface merely plays the role of a 
geometrical restriction without any further energetic effects. 

The canonical partition sums are computed from (14). Since we must expect corrections 
to the scaling law (4) from confluent singularities [6, 31, 

a 
p ,  N 2, ( 1 )  (q) = ( N  + b)”-‘ (1 + + . . .) 

with unknown constants a ,  b, A . .  . , we computed effective exponents 

For N + 00 they should converge to y~ as 

In equation (17) it is crucial to take a recise value of pc, since an error Apc in pc gives 
rise to an error N A p J ( p l o g 2 )  in yl,ew 

Values obtained with three different values of pc  (0.2134924, 0.2134908 and 
0.2134892) are plotted in figure 2 against l/N0.75. It it obvious from these data that 
the estimate of pc  from [ 141 is somewhat too large. We can definitely exclude the even 
larger value pc  = 0.2134987 of [19] (though these authors quoted very small error bars) 
and the similar value of [20]. From our data we propose 

C N P  

pc  =0.2134908rt0.0000005. (19) 
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The parameter b in (17) was set to b = 0. The exponent of N on the abscissa of figure 2 
was chosen such that the curve for p = pc  is linear, and gives us A = 0.75. We had to use 
A -= 1 in order to ensure linearity, but there was no need for b # 0. 

- I : : : : : : : : . : : : : : : : : :  

PO2134924 
.......... P;O.2134908 

ps3.2134892 

0.75 

0.7 

Figure 2. N-dependent estimates far the exponent y ~ .  obtained by taking for ps the values 
0.2134892,0.2134908and 0.2134924. Theparameterbin (17) wassetto0. Onthehorjzontal 
axis we plotted 1/N”15, which was necessq  to obtain linear behaviour. 

a 

N 

FigureB. T h e p m d u c t Z ~ ) / Z ~ ” ~ N - ~ ,  withthreedifferent valuesofx (1.058,1.062and 1.066. 
starting f” above). These powers were chosen such that the curves became roughly horizontal 
for large N, and equal to - y11 within the enor bars. To reduce statistical fluctuations, data 
are averaged over bins with width A N / N  = 0.02. 

When performing the same analysis for the exponent y ~ l ,  we find much larger statistical 
fluctuations (since the chance that a long chain will have its end on the surface is very small). 
To estimate MI, we use the ratio Z!$)/Z!$’) which is independent of pc. An additional factor 
N-X is multiplied such that the resulting expression Z { ) / Z ~ ” N - X  is roughly constant for 
large N (see figure 3). 

Our final results for the exponents are thus 

These values are in good agreement with the (rather imprecise) results from exact 
enumerations [3] and from the €-expansion [5]. Our y ~ l  is also in agreement with that from 

YI = 0.679 4z 0.002 ~1 L -0.383 0.005 . (20) 
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the best previous simulations [201, while our yf is somewhat lower than the value from 
[20]. But due to the better statistics, the accuracy of our estimates is roughly a factor of 
two better. To test the scaling relation (1 I), we use the estimates y = 1.1608 zt  0.0003 and 
U = 0.585 zk 0.0015 of [14], and get 

R Hegger and P Grassberger 

y - 2 ~ 1  + y11 + U = 0.005 f 0.006. (21) 
We mention finally that OUI critical exponents violate the Bray-Moore conjecture y1 I = v-  1 
[21] which is also violated in d = 2 [24] and in second order of c = 4 - d. 

4.2. The special point 

In contrast to pc,  the value of qc is not known with high precision from previous analyses. 
From [20] and from figure 1 we know just that qc lies in the vicinity of 1.33. 

Also, it is less trivial to compute observables at different values of q from raw data 
which were taken at a different q. This could be done straightforwardly if one could store all 
joint dismibutions. For our chain lengths this was not feasible. Approximate readjustments 
of q could be made if one assumes linearity of the observables in q. since the derivatives 
can be calculated via second moments involving the relevant observable and the number 
m of surface contacts. We preferred not to do this either, but to make independent runs at 
different values of q close to qc. 

We thus performed runs with 6 different values of q between q = 1.3297 and 
q = 1.3331. Their results are shown in figures 4 to 9. 

N 

Figure 4. pfZp’(9) for the six different 9 - d u e s  (staning with the lowest curve) 1.3297, 
1,3305, 1.3310, 1.3314, 1.3320 and 1.3331. ps was set to 0.2134908. fhe value found at the 
ordinary transition. 

In figure 4 we show p t Z $ ) ( q )  with pc = 0.2134908, and effective exponents for yf 
computed from these data according to (17) in figure 5. The average energy (more precisely 
E N ( q ) f l )  and estimates computed therefrom for the exponent 4 are shown in figures 6 
and 7. The ratios Z$)/Z$’) x N4.5’6 are shown in figure 8. We do not show effective 
exponents for them since this plot would be too noisy. Finally, in figure 9 we show effective 
exponents obtained from the end-to-end distances. In contrast to the previous plots, there 
we also show data for q = 1, and only plot results for three values of q near qc. 

All data displayed in figures 4-9 show substantial corrections to scaling. It would thus 
be very dangerous to determine qe from only one of these plots, and to use it later in 
determining critical exponents, as it was done, for example, in [20]. For instance, the data 
for Zi ’  (figure 4) seem to be straightest for the smallest value of q (= 1.3297) (unless 
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0 0.02 0.04 0.06 0.08 0.1 

1/N 

Figure 5. N-dependent estimates for the exponent y;, using the~data from figure 4 and an 
equation analogous to (17). Parameters are b = 0 and A = 1, i.e. the data are plotted against 
IIN. The six curves correspond to the same values of q as in figure 4. 

t /t 

N 

Figure 6. EN (4) x f i  for the same six values of p as in figure 4. The lowest curve corresponds 
to the smallest q.  As in figure 3 we averaged over bins with ANIN = 0.02.. 

we accept a completely unrealistic value for pc),  and it is~only due to our high statistics 
and large range of N that we see from figure 5 that indeed this value of q is definitely 
subcritical. In contrast, the energies shown in figure 6 would have suggested a too large 
value of q if we had simply fitted a straight line without allowing for corrections to scaling. 

In order to estimate qc, we thus do not rely exclusively on any one of these distributions, 
but look for a good compromise. Such a compromise does indeed exist (which is again a 
check for our estimate for pc) ,  and our best estimate is 

qc = 1.3310f0.0003. (22) 

The corresponding transition temperature is 

Ts = I/ logq, = 3.497 f 0.003. (23) 

This differs considerably from the result Ts = 3.436 & 0.012 (qc = 1.3378 f 0.0013) of 
the best previous Monte Carlo simulations [20] which used much shorter chains (mostly 
Nmax = 350, compared to our Nmax = 2000). Thus it seems very likely that the results 
of [ZO] are strongly affected by scaling corrections. 
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0.6 

0.55 2 
4 

0.5 

0.05 0.1 0.15 0.2 
1m06’ 

Figure 7. Similar to figure 2. but for the exponent 6 belonging to the mean energy per chain, 
and using b = -0.8 m d  A = 0.65. 

N 

Figure 8. The ratio ZC’/Z,$’’ x N-0316 for L e  six different values of 4. The upper cwve 
corresponds to the smallest 9. Again we averaged over intervals A N / N  = 0.02. 

With this estimate of qc, the critical exponents can be read off directly from figures 5, 
7, and 8. From figure 5 we obtain 

yf = 1.230 zk 0.002 (7-4) 

4 = 0.496 3z 0.004 (25) 

y:, =0.714zk0.006. (26) 
The end-to-end distances (figure 9) are sufficiently precise to give an independent check 

for qc (in particular, the large estimate of qc from [ZO] is excluded), and to test the internal 
consistency of our data. But they are not precise enough to improve the previous estimate 
for the exponent U [14] which was mainly based on the very high statistics simulations of 
[221. 

A final independent estimate of 4 (and check of qc) results from analysing the shape of 
the surface transition curve in figure 1 (equation (7)). This curve was obtained numerically 

from figure 7 we find 

and from figure 8 we can read off yf - yf, = 0.516 & 0.006, leading to 
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0.1 0.2 0.3 0.4 
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Figure 9. Estimates for the exposent Y obtained with (17). In contrast to the preceding figures, 
thecurvesco~pond toq= 1. 1.3297. 1.3310and 1.3331. ~euppersetofcurvesisobWined 
from RI, the lower from RI,. With incrrasing q ,  vCf decreases for the former, while no clear 
systematics is seen for the latter, except for 9 > 9c. The parameter b is 0. Data are plotted 
against l/Nn,4. 

2 

Pc-P 

Figure 10. Log-log plot of pc - p against qo(p)p - 9cpc. The errors include both statistical 
emrs of the the estimation of qn(p).  and systematic errors due to the uncertainties in pc and qs. 

by demanding that p N Z i ' ( q )  scales as NYd=* in the range 10 < N < N-. This i s  of 
course only correct if the value of p is far enough h m  pc, since we would otherwise be 
in the cross-over region. For some values of p close to pc we used smaller fitting intervals 
(increasing the lower bound on N ) ,  but this then gives rise to very large statistical errors. 
The results, plotted on a log-log plot of pc-p against q o ( p ) p - q C p c  and using the estimated 
values of pc and qc, are shown in figure 10. We see approximately a straight line, giving 
an exponent @ = 0.5 & 0.03 which agrees with (25), but with much larger error bars. 

All our exponents are substantially different from the best previous estimates. In 
particular, our y exponents are considerably smaller than those given in [ZO] (y;  = 
1.304 f 0.006, yfl = 0.806 & 0.015) and in [4] (yf = 1.44 & 0.03). The value of y; 
is also smaller than that obtained from exact enumerations of short chains in 1231. They are 
in good agreement with those obtained from second-order +expansion [SI, y; % 1.24 and 
yfl N 0.72. The latter should, however, not be taken too seriously since the same order of 
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the +expansion gives the very wrong prediction @ = 0.67. Finally, our gamma exponents 
satisfy the Barber scaling relation (II), 

R Hegger and P Grassberger 

y - 2yf + yfl + U = -0.0002 & 0.007. (27) 

Our value of @ is also much lower than previous estimates. In particular, reference [ZO] 
quoted 0.530f0.007, while [4] had obtained 0.58 f0.03. The origin of these discrepancies 
is obviously the large corrections to scaling seen in figure 6 which at the same time lead to 
overestimations of c$ and of qc. Our result suggests that indeed @ = i, as for d = 2 and 
d = 4 [E]. Since, moreover, @ = f holds exactly for lattice animals (branched polymers) in 
d = 3 [26],  we have the interesting possibility that c$ is superuniversal. We should however 
mention that a numerical study of branched polymers in d = 3 [U] gave @ = 0.70 f 0.06, 
and that the +expansion predicts that c$ # in d = 4 - E [5]. Obviously this problem 
deserves further attention. 

5. Discussion 

We have applied a new Monte Carlo algorithm to the problem of polymers near an adsorbing 
surface. It is not quite as fast as the pivot algorithm [28] in cases where the latter is efficient. 
But our algorithm has the advantages that it is fairly simple, fast, and is not slowed down 
in complex geometries or in the presence of interactions, where other algorithms become 
extremely inefficient. 

We compared our results mainly to previous simulations 1201 which were done with an 
algorithm which is very efficient for medium-long chains, but whose efficiency decreases 
exponentially with chain length. The fact that we could simulate much longer chains (up 
to N = 2000) with very high statistics allowed us to see important corrections to scaling 
which went unseen in previous analyses. This concems mainly the tricritical (‘special‘) 
point, while our results for the ordinary transition agree essentially with values found in the 
literature. 

Taking these corrections to scaling into account, we find that the exponents ys and ys, 
and the cross-over exponent c$ are all much smaller than according to previous estimates. 
The most interesting result is that @ is consistent with f (our best estimate is 0.496f0.005), 
suggesting that @ = f is indeed a superuniversal result for critically adsorbed polymers in 
all dimensions between two and four. 

Apart from this, our results are in reasonable agreement with older results for polymers 
in the bulk. This concems mainly the values for pc and for U. It shows that our method 
has indeed no bias, and is very efficient. Applications to polymer adsorption in d = 2, to 
theta polymers in d = 2 and d = 3, to polymer solutions in the dense limit and to SAWS in 
d = 4 will be presented elsewhere. 
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